Urban Design Study of the I-81 Project Area

Syracuse

I-81

Urban Design Study of the I-81 Project Area

AIACNY
Syracuse
I-81
URBAN DESIGN STUDY OF THE I-81 PROJECT AREA
Syracuse I-81

URBAN DESIGN STUDY OF THE I-81 PROJECT AREA

3 Executive Summary
4 Summary of Findings
8 Preliminary Evaluation

Analysis
11 I-81 Alternatives
12 V-2: Minimum Building Demolitions
13 Regional Map: Interstates
14 Reappropriating I-90 for Local Use
15 Predominant Neighborhood Character along I-81
16 Building Typology
17 Parking vs. Built
18 Existing: Elevated I-81 Viaduct
19 Potential Boulevard Design and Land Available for Development
20 Summary of Urban Design Approach
23 Transitioning I-81 to Almond Ave
24 New Highway Intersections
25 New Major Intersections
27 Almond Avenue: New Urban Infrastructure
29 Traffic Dispersal throughout Downtown

Recommendations Part I
Main Streets - Connections
32 Main Streets in Syracuse
33 Main Streets Divided by I-81
34 Current Connections
35 Potential Connections
36 Wayfinding/Signage

Recommendations Part II
Urban Strategies for Syracuse
37 Interim Sidewalk Widening
38 Gateway
39 Pinchpoint
40 Chicane
41 Bike Corra/Bike Sharing
42 Parklet
43 Interim Public Plaza
44 Example: Major Intersection
45 Leading Pedestrian Interval (LPI)
46 Example: Syracuse Boulevards

SYRACUSE I-81:
URBAN DESIGN STUDY OF THE I-81 PROJECT AREA

July 24, 2014

A publication of the “AIA CNY I-81 TASK FORCE”

PREPARED BY
Open Atelier Architects

UNDERWRITTEN BY
URBAN DESIGN CENTER OF SYRACUSE, INC. (UDC)

CONTRIBUTORS
David C. Ashley, AIA
Dean Biancavilla, AIA
Anthony M. Catsimatides, AIA
Robert Haley, AIA
Tom Kinslow, AIA
Andrew Schuster, AIA
Mike Stanton, Ph.D.

With:
Brandon Stevens
Dominic LiPuma
Executive Summary

**AIACNY “I-81 Task Force”**

The Central NY Chapter of the American Institute of Architects has a long history of local involvement in community design issues of History, Architectural and Urban Design throughout the Syracuse and Onondaga County area. At this critical time, with the NYS Department of Transportation “I-81 Viaduct Project”, decisions will be made establishing the character, form and development environment of our regional center for the next 50 to 70+ years.

This AIACNY I-81 Task Force “White Paper” report, preceded by our 3+ years of involvement in this topic, summarizes our 11 month participation and evaluation of the NYSDOT design process and their recommendations. First we critique and list the results of the DOT process to date with a “Summary of Findings”. This is followed by a comprehensive “Preliminary Evaluation” matrix created for this project. Based on supporting the shortcomings of the work to date found in the “Analysis”, we see the significant need for an “Urban Design Approach”, which is included in the “Recommendations for Main Streets” and followed by “Urban Strategies for Syracuse Streets”. These are “best practices” design guidelines compiled here specifically for the I-81 Viaduct Project use and inclusion as the project moves forward.

We believe the design process to date is missing major components. The study is “repairing” an original “bad” intrusion on the city. The current governing “problem statement” is highway centric, which is not adequate for this time, for this urban context, both now and for the future. The DOT options presented to date and intending to be moved forward, offer building wider, higher and faster highways by demolishing and rebuilding in it’s current location, adding multiple new access and exit ramps, essentially taking away a significantly larger portion of the center of the city than exists today. This is not the comprehensive urban planning needed at this time. This approach can be broadened now, to include proven planning criteria, looking to recreate the character and perception of the city for years to come.

A few of the issues not addressed at present include:

No construction duration schedules, delays and business impact information has been provided for any of the options presented to date.

No “life-cycle” cost comparisons, including maintenance & operations have been made for any of the options to date.

No “long-range, regional public transit master plan” is available to inform DOT of future traffic estimates, changing ridership needs and transportation modes.

This is a “constructive critique”, offered with experience and attention to this significant planning issue. This process needs the highest standard of community and design leadership at this time.

The AIACNY “I-81 Task Force”

---

Summary of Findings

The AIACNY Task Force has been meeting since September of 2013 and has been in attendance at every presentation and work session offered by the DOT on the I-81 project. Our group looked into the history of I-81 and the impact it has had on Syracuse as part of our research. We also looked at what future impacts the highway would have in the various forms that are being proposed by the DOT. One goal was to apply more current urban planning to the condition; another was to partner in process a comprehensive urban design approach with effective traffic engineering. Whatever the outcome of the project is we felt that it should result in something that improves both the City and County.

Learned Information

**Conditions**

1. Route 81 behaves as a spur highway. Most traffic, 88%, travels to the City rather than through it. Only 12% of the traffic using the highway bypasses the City.
2. The existing raised arterial has created a “dead zone” under and around it. No development, compromised safety and environmental conditions, and no pedestrian activity.
3. Commerce depends on traffic and accessibility.
4. The City street grid is of ample urban capacity, largely intact and underutilized.
5. Underground conditions in the City show high groundwater and high levels of salinity (the “Salt City”).
6. Route 690, which was built on the former elevated railroad, plays a very important role in accessing the City from the surrounding communities.

**Economies**

1. Syracuse is currently underserved for traffic access, limiting new economic opportunities.
2. There is a need for a balance of service between City and County access by the infrastructure, i.e. one should not shoulder more of a burden for the other.
3. Taxes support the infrastructure. Economic considerations should take in all points immediate and long term when considering the ultimate cost of the project. This would include real estate affected, real estate acquisition, materials, construction costs, construction schedule, maintenance, jobs to construct, replacement costs, business interrupted during construction, jobs created in new development, and mixed use development opportunities.
4. The closure of the highway system has been estimated at between 2 and 8 years depending on the option taken. The impact to local and regional business needs to be considered at the planning stage to reduce this amount of time and effect on local business.
5. Pedestrian activity makes for a walkable urban environment. Walkable environments produce commerce.
6. The result should enhance, not harm the viability of the City and County. Infrastructure should support not cripple.
Micro Infrastructure
1. Neighborhoods are affected by the raised arterial.
2. Street connectivity is affected by the superimposition of a highway.
3. The highway creates a discontinuation of sidewalks, blocks and commercial centers.
4. A traffic plan mitigating the highway closure during construction should demonstrate that there are on grade networks that are available and functional.

Macro Infrastructure
1. How will project support the goals of future sustainable transportation systems, which can affect the capacity of infrastructure?
2. The City and County need to work with the DOT to integrate the goals of large scale transit, rapid transit and regional network systems with any highway analysis. This should affect the design capacities being considered.
3. The project should accommodate commercial through traffic, but should also consider the actual amount when weighting the impact on system design.

Environment
1. The project should follow the Federal Highway Standards when considering the environmental impact on the City and County.
2. The project should reduce the impact, in as much as possible, of traffic on the air, land and water in and around the affected areas. The EIS being prepared by the DOT needs to recognize environmental considerations in the design and selection phases. The status quo is not an acceptable condition as a starting point.
3. The infrastructure should support not degrade.

In reviewing the options proposed by the DOT (see DOT website for descriptions of the options at https://www.dot.ny.gov/I81opportunities/alternatives) for the I-81 project area we note the following comments:

Tunnels (Options T-1, T-2, T-3, T-4)
1. Each of these tunnel options would require much additional land taking and the demolition of historic homes and commercial buildings, which is an unacceptable outcome for the City of Syracuse. The removal of any additional revenue-producing properties, as well as further disruption of the City street grid is a clear step backward in City Planning.
2. Tunnel designs by their very nature preclude any easy chance for intermediate exits. Once traffic enters the tunnel it is committed to travel the full length of the tunnel unless expensive and long ramps are constructed. The pitch and clearances of ramps from underground venues require more land taking than a viaduct with ramps or a street level solution with no ramps.
3. The geotechnical information on subsurface water conditions is well known for the Salt City. The saline level is extreme and would pose a serious risk to all steel used in the concrete construction of walls and ceilings of the tunnels.
4. The high groundwater levels in the area would necessitate constant pumping of the tunnel to keep the roadway clear. Seals would be constantly challenged to prevent leakage. The tunnel might lend itself to the Save the Rain initiative, though likely to its demise.
5. A tunnel design much like the Lincoln and Holland tunnels of New York, and the “big dig” in Boston requires an extensive and complicated air ventilation system for breathable air in the tunnel and must be maintained 24hr/7days a week in perpetuity at great cost. The “big dig” vent shafts reach as high as 230’ to evacuate particulates from the surrounding streets.

Depressed Highways (Options DH-1, DH-2)
1. In a City of excessive snowfall, an abundance of rain and high groundwater, to build a roadway like a large drainage ditch does not seem to be practical either short or long term.
2. In urban environments depressed highways act as moats around a castle. This would further divide what has already been divided within the City. Crossing points would be more limited than they are with the raised arterial.
3. The size and scale of the gash in the ground would be inconsistent with a cohesive visual urban environment; the City is too small to absorb this scale of intervention.
4. These options further the disuse of the City street grid.
Viaducts (V-1, V-2, V-3, V-4, V-5)

1. Limited access to cities is a consequence of raised arterials. Constructing ramps is expensive, land intensive and therefore too few are provided. Cities survive on available easy access to all points for commerce and liveability. The rebuilding of a viaduct will continue to deny the City the access it needs to survive.

2. Major cities engaged in urban rebirth are dismantling the leftover parts of the 60’s urban renewal like raised arterials and superblocks. The resulting development shows that this can be effective strategy.

3. The arterial creates a “dead zone” under and around it. This denies continuity of development, walkable streets and visual connections to commercial centers that are so important to the success of a city organism.

4. The continued taking of land and buildings only furthers the damage done initially by the superimposition of the raised arterial upon the City. This will increase when trying to conform to new Federal highway design standards.

5. The constant replacement of steel and concrete is an unsustainable exercise.

6. The safety of a raised freezing road deck in a region that sees low winter temperatures has to be questioned.

7. The viaduct continues the disuse of a largely intact City street grid.

Boulevards (Options SL-1, SL-2, SL-3)

1. In all proposals for boulevards the assumption is that it will be carrying all the current traffic loads all the time. Once a roadway connects with the ground the opportunity to re-connect to the City street creates an opportunity to drain down traffic loads by re-distribution to other streets. The result of not considering this is proposals for boulevards that are too wide to function as effective City streets. There are effective dimensions that need to be maintained for streets to work for commerce and pedestrian activity.

2. Comparisons of the proposals to Erie Boulevard (East of the City) are justified in that the dimensions are similar. Erie Boulevard (East of the City) does not work as an effective street as it too wide, has too many traffic lanes, has buildings that are too short and has no sidewalks.

3. The boulevards as proposed would superimpose an unnaturally scaled element on a City the size of Syracuse.

These comments are the result of combining urban design practice with the need for car traffic. The two can co-exist if neither one trumps the scale of the other. At the time I-81 was constructed the belief was to separate car traffic from streets and visual connections to commercial centers that are so important to the success of a city organism. The solution should be scaled to the environment it serves. The documented impact and patterns of use should be clear enough to make an informed decision. The project should be predicated on the needs of the majority of those actually going to and through cities on the ground. It was how people came to all points in the cities, bringing commerce and liveability. The rebuilding of a viaduct will continue to deny the City the access it needs to survive.

Following is an evaluation matrix as prepared by the Task Force, to grade the DOT options based on the subject areas listed and qualified in the footnotes. An analysis follows that with a series of diagrams applied to the Syracuse and Onondaga County project area. There is a planning approach demonstrating the integration of the street grid with I-81 following the analysis. At the end of the document there are a series of views showing specific urban areas and recommendations for how traffic and pedestrian activity can co-exist, anticipating more of each if the streets are re-inigorated.
# I-81 Preliminary Evaluation

The I-81 options can be found at [https://www.dot.ny.gov/i81opportunities](https://www.dot.ny.gov/i81opportunities) for your review.

## Analysis

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Options</th>
<th>Tunnel</th>
<th>Viaduct</th>
<th>Depressed</th>
<th>Street Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pedestrians</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cycling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Movement of Goods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constructability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Realm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social &amp; Health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Built Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cultural Resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Economics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TOTALS**

| | | | | |
|---|---|---|---|
| Preferred = 2 | Moderately Preferred = 1 | Least Preferred = 0 | |

**INSTRUCTIONS:** For each box above:

- Enter 0 (Least Preferred), 1 (Moderately Preferred) or 2 (Preferred)
- Complete your own evaluation by filling in the matrix.

**Footnotes:**

- Does This Option...
  1. Improve Automobile Travel Times & Experience
  2. Integrate with Alternate Public Transportation such as Bus Rapid Transit (BRT) or Light Rail (Train)
  3. Enhance the Pedestrian Accessibility, Experience & Safety
  4. Consider the use of Bicycling throughout the City and Region (Accommodation, Safety & Experience)
  5. Promote Local Distribution of Goods
  6. Improve Traffic Safety
  7. Consider the Shortest Construction Time and Least Disruption to Businesses & Daily Life
  8. Promote Development & Quality of Life
  9. Strengthen or Enhance the Experience of the City
  10. Enhance the Visual Character and Fit with the Surroundings
  11. Improve People’s Health (Clean Air, Noise Pollution), and Reduce Crime
  12. Preserve Vegetation, Wildlife & Water
  13. Preserve Historic Buildings & Structures
  14. Support Regional Business Growth
  15. Support City Business Growth
  16. Lowest Life-Cycle Cost inclusive of Construction & Maintenance for 50 years
  17. Improve Community Land Value
I-81 Alternatives

I-81 bisecting Syracuse neighborhoods. Syracuse.com

Viaduct V-2: Minimum Building Demolitions

BUILDINGS LIKELY REQUIRING DEMOLITION

DOTTED LINE: POTENTIAL D.O.T. RIGHT OF WAY BASED ON EXISTING VIADUCT EASEMENT

MINIMUM BUILDING DEMOLITIONS

NYSDOT V-2 VIADUCT ALTERNATIVE FOR INTERSTATE 81 REPLACEMENT PROJECT

Reconnect Syracuse
Reappropriaing I-90 for Local Use

Existing Interstate Highways
- I-81
- I-90
- I-690
- I-481
- Almond Ave.

Proposed Highway Alteration
- I-90 Toll Free Segment
- Transit Ring

Removing tolls from this section of I-90 is a minimally invasive method of alleviating local transit burdens. This toll-free segment of I-90 would complete an efficient transit ring by joining I-481 and I-690.
A new boulevard would react to existing neighborhoods within the city, responding in accordance to the more residential and public park spaces that exist on the south side and the more commercial and urban environment on the north side as well as to the educational region in between.

Parking/Vacant Space

The large amount of unutilized space currently along I-81 has the potential to be developed in order to benefit the entire community. Current parking could be resourced, allowing for the development of new business and retail opportunities, while also creating spaces for the public to generate new and vibrant activity.
Vacant Lots vs. Built Environment

Existing: Elevated I-81 Viaduct

Downtown

University Hill

Vacant Space

Built

I-81

I-690

Railroad

SCALE
1: 16,000

University Hill

Oakwood Cemetery

Drawn by Open Atelier Architects
Potential Boulevard Design and Land Available for Development

This is a proposed design for an 8 lane city street, a boulevard, 140 foot RoW, that will handle a lot of traffic, be easy to cross for pedestrians and be friendly for commercial and residential development on both sides and be sustainably designed consisting of:

• 8’ sidewalk (each side),
• 4’ tree planting zone, intermittent (each side),
• 6’ wide two-way striped bike lane, green color like University Ave, next to sidewalk with 4’ landscaped planter separating first traffic lane with intermittent curb breakthroughs for loading and HCP (on one side of boulevard only),
• 11’ bus loading (at corner only), parking and commercial loading lane (each side),
• three 11’ driving lanes (with center lane labeled emergency) city speed limit 30mph (each side),
• 16’ landscaped center median (curbed concrete at pedestrian crossings with walk signals)

Design median as partial rain garden maybe with some dedicated beautification/sculpture areas,
• then repeat the four lanes, tree zone and sidewalk same as other side (except double bike lane),
• All utilities underground, lighting conforming to LEED Credit SS-8 Light Pollution, concrete or light colored paving to reduce heat island effect,
• Total 140 feet RoW maximum,
• Unused width portions of existing I-81 RoW, 6 acres to the city and 9 acres of parking lots for part of RFP commercial/residential development like the $350 million Inner Harbor RFP.

Red Property - 6 acres, land left for the commercial development when 140’ boulevard replaces existing elevated Route 81 Viaduct.
Green Property - 9 to 11 acres of surface level parking lots that should be replaced by buildings. Note: there is more than enough empty space on the roof and top level of the two big Upstate garages to hold all the cars in the lots presently used by the NYS psych center and Upstate’s scattered facilities. A city Garage(s) could replace the rest of the spaces.
Yellow Property – Pioneer Homes 1941 two story housing 10 buildings that might be included down to Jackson Street.

Summary of Urban Design Approach

Approach

In the aerial photo of Syracuse highways run over the city with limited street access. Viewing the city streets below, many streets are as wide if not wider than the highways but with no traffic on them. This separation of high speed traffic and the City streets was the goal of mid-century planning and urban renewal, which ultimately failed. The limited access to city streets from the highways has stifled growth by taking an important part of commerce from the urban equation. We have learned that the city and traffic need to be integrated to keep the circuit of commerce intact with the surrounding region.

The underutilized street grid of Syracuse can provide multiple paths of travel and access. The grid creates options by intersecting itself in numerous places. Every running foot that is traveled can be lined with opportunities to purchase goods and services in the form of storefronts. Combined with sidewalks, people populate these routes on foot or by bicycle to create a walkable community. It is this activity that generates a healthy and successful urban environment. With carefully signalized routes and effective wayfinding signage, fast and slow auto routes through the city can become the basis of efficient movement throughout the city.

If I-81 is properly integrated into the underutilized street grid of Syracuse, both North and South, the stress on the arterial corridor at Almond Street will be reduced to point of normal consideration. There will be a reduced need for a tunnel, viaduct, depressed highway or boulevard. You will only need the street grid that has been there all along, waiting to be used. During the several years of highway reconstruction shut down that is what will be used anyway.
Northbound traffic off of 690 West will still have the ramp to I-81 North. For Southbound traffic, I-81 comes to the ground after crossing North Salina Street. From that point southbound traffic has already had access to Butternut Street and Clinton Street. The route continues on Oswego Boulevard which is presently aligned on the same path as the old Oswego Canal and connects to Erie Boulevard (the old Erie Canal). Along this path is access to Warren Street, James Street (which doubles back to Salina Street) and Montgomery Street. Continuing East, Erie connects to State Street, Townsend Street, McBride Street and Almond Street. Of these routes Salina, Warren, State and Townsend can find their way to South of the City, but Almond can still be the main route south if desired. Above this realigned I-81, Eastbound 690 can be re-aligned to parallel Westbound 690, allowing proper bridge geometry to cross the route below. Construction of this re-alignment can occur while the old 690 East is operational and when the new 690 East is finished a short shutdown can connect it to the old route. When the old 690E overpass is removed, several acres of vacant land are returned to the city for development. Comprehensively this proposal returns a total of 20 acres of new development to the city, including the land around the Almond Street corridor.

From 690 East there will be a new down ramp connecting to North State Street and eventually Erie Boulevard. It can also be constructed with 690 East operational. This allows a more direct connection to a Southbound route connecting with the original I-81 South of the city. Signalizing can keep one or more routes moving at 40-45 mph at peak times. If there is a Dome event or a traffic tie-up, travelers have 3 other options immediately available to navigate around and through the city South to 81 in Salina, State or Townsend Streets. There are routes off those routes via intersections.

Southbound 81 traffic can access 690 West and exit at Butternut, proceed through the intersection below Franklin Square and continue on up the West Street flyover where a small connector would be constructed on vacant land to join up with 690 West. Those getting on the West Street flyover would be able to merge over to that same connector. This would save many properties from being demolished for the 81 to 690 West flyover currently being proposed by the DOT.

Details: North Sector

Northbound traffic from I-81 / I-481 interchange would enter a transition from expressway to a street level boulevard. To achieve this solution a portion of the current I-81 highway would have the current berm excavated and removed down to the grade level of adjacent streets and repaved as a city street with sidewalks and pathways for bicycles. Street level intersections at the former on-ramp / off-ramp of Calthrop as well as, Brighton Avenue, and Colvin Street would allow for turn-offs of downtown traffic to divert to the existing street grid and re-invigorate South Salina Street as a major thorough-fare into the city. The city has already adopted the Southeast Gateway Neighborhood Vision Plan as part of its Comprehensive Plan which proposes new mixed development along vacant lands just south of downtown. In addition the I-81 traffic as it proceeds north will find additional street level intersections at Kennedy Street, and East Castle Street, then travel under a modified railroad overpass, and come to a proposed intersection at Van Buren St. This at-grade level street would proceed north and connect with all the east-west streets along the current Almond Street / Avenue pathway. In this way the new solution re-energizes the city street grid and diffuses traffic efficiently to multiple destinations of the University, the many Hospitals of the Hill, as well as downtown destinations of South Salina business district, Armory Square, Columbus Circle, Hanover Square, and of course Clinton Plaza.

Details: South Sector

If all connections are made to the street grid the concentration of traffic is reduced through greater distribution. Fewer cars will be travelling on individual streets with more options available. The question of a tunnel, viaduct, depressed highway or boulevard is significantly reduced in importance. The re-animation of the street grid will reunify the City, increase commercial potential in many ways, increase activity in and around the City and it is done using much of what is already in place. As a long term approach this should be more cost effective and sustainable. A viable City makes a viable County.
A new boulevard would reduce the road width of I-81 along Almond Ave by over 130 feet, making that area available for new urban development.

Transitioning I-81 to Almond Ave.

New Highway Intersections

An example of how a city corner can be redesigned to allow for smoother traffic flow.
Major Intersections:
Deployment of City Street Strategies based on the guidelines proposed by the National Association of City Transportation Officials (NACTO)

New Major Intersections

Drawn by Open Atelier Architects
Remove this existing portion of I-690 E (dotted in red) and reconfigure closer to I-690 W to open up, along with the removal of I-81, around 20 acres of new developable land!
Traffic Dispersal throughout Downtown

Scale: 1” = 1000’

Drawn by Open Atelier Architects

Excavation of I-81 berms to create a ground-level street, allowing for new intersections that connect the new city street with the existing urban grid.

City Streets allow for multiple points of traffic dispersion throughout the city, alleviating traffic congestion at any one given point.
Recommendations Part I
“Main Streets” - Connections

“MAIN STREETS” IN SYRACUSE

LEGEND:
- I-81
- “MAIN STREET”
- CITY STREET
- CURRENT CONNECTIONS
- POTENTIAL CONNECTIONS

“MAIN STREET” DEFINED:
A COMMERCIAL CENTER STREET THAT CREATES A NEIGHBORHOOD
“MAIN STREETS” DIVIDED BY I81

CURRENT CONNECTIONS

“MAIN STREETS” UNITED BY CITY STREET

POTENTIAL CONNECTIONS
**Wayfinding/Signage**

**Precedent: Walk!Philadelphia Wayfinding System - Philadelphia, PA**

Breaks the city up into 5 distinct districts, which each consist of a unique color-coded system made up of 1. **Disk Maps** and 2. **Directionals** to aid in navigating the city.

**Disk Maps**

“These simplified, diagrammatic maps of Center City are located mid-block on both sides of the street. They utilize a “heads-up” orientation which always place the direction the viewer is facing at the top of the map. This allows visitors to quickly orient themselves in the City. If a destination on the map is toward the top and left on the map, they simply walk forward and turn left.” - City Center District

**Directionals**

“These colorful signs, located at each street corner, display six to ten listings of nearby destinations. The double-faced directional signs also display the name, color and icon of the district the user is in. Listed destinations include landmarks and areas shown on the disk maps as well as attractions within a 2-to-5 block radius. Arrows indicate the direction of the listed destinations in order of proximity to the sign location.” - City Center District

---

**Recommendations Part II**

**Urban Strategies for Syracuse**

*Based on the guidelines proposed by the National Association of City Transportation Officials (NACTO)*
Interim Sidewalk Widening

Example: Connective Sidewalk Widening - Corridor Extended Bike Lanes
University Ave, Syracuse, NY

Gateway

Example: Gateway - Save the Rain - Porous Pavers, Tree Trenches, Sidewalk Widening
318 Erie Blvd, East Syracuse, NY
Bike Corral/Bike Sharing

Example: Bike Sharing System
Chicago, Illinois – photo: Peopling Places

National Association of City Transportation Officials (NACTO)

Parklet

Example: Parklet – Parking Day (SU Architecture Students)
S. Clinton St. & Walton St., Syracuse, NY

National Association of City Transportation Officials (NACTO)
**Interim Public Plaza**

"Interim public plazas transform underutilized areas of roadway into public spaces for surrounding residents and businesses. Using low-cost materials, such as epoxied gravel, movable planters, and flexible seating, interim public plazas reconfigure and revitalize intersections that might otherwise be unsafe or underutilized. Like parklets, interim public plazas are the result of a successful partnership between the city and a neighborhood group or business association."

Example: Interim Public Plaza - Pocket Park - Save The Rain
N. Clinton St. & W. Genesee St., Syracuse, NY

**Example: Major Intersection**

"Minimize unused space. Excess pavement increases speed and accommodates driver error. Control speeds by tightly managing the design and spatial layout of intersections. Tighten lane widths and eliminate unnecessary travel lanes, reallocating space for bike lanes and cycle tracks." - NACTO

Before - National Association of City Transportation Officials (NACTO)

After - National Association of City Transportation Officials (NACTO)
Leading Pedestrian Interval (LPI)

A Leading Pedestrian Interval (LPI) typically gives pedestrians a 3–7 second head start when entering an intersection with a corresponding green signal in the same direction of travel.

LPIs have been shown to reduce pedestrian-vehicle collisions as much as 60% at treated intersections. - NACTO

Phase 1: Pedestrian Only - Pedestrians are given a minimum 3–7 second head start entering the intersection. - National Association of City Transportation Officials (NACTO)

Phase 2: Pedestrians and Cars - Through and turning traffic are given the green light. Turning traffic yields to pedestrians already in the crosswalk. - National Association of City Transportation Officials (NACTO)

Example: Syracuse Boulevards

Foreman Park - Median Park
E. Genesee St., Syracuse, NY

Planted Median & Infiltration Bed - Save the Rain
Concord Place, Syracuse, NY

Flow-through Planters

Pervious/Porous Pavement

National Association of City Transportation Officials (NACTO)